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Abstract. The marine biogenic gas dimethylsulfide (DMS) can modulate regional and global climate by enhancing aerosol 

light scattering and seeding cloud formation. However, the lack of time- and space-resolved estimates of DMS concentration 

and emission hampers the assessment of its climatic effects. Here we present DMSSAT, a new remote sensing algorithm that 

relies on the nonlinear relationship between DMS, its phytoplanktonic precursor dimethylsulfoniopropioante (DMSPt) and 

plankton light exposure. The DMSSAT algorithm is computationally light and can be easily optimized for global and regional 15 

scales. At the global scale, it reproduces the main climatological features of DMS seasonality across contrasting biomes with 

remarkable skill compared to previous algorithms. Shortcomings of the global-scale optimized algorithm are the propagation 

of regional biases in remotely sensed chlorophyll (causing underestimation of DMS in the Southern Ocean) and the inability 

to reproduce high DMS/DMSPt ratios in late summer and fall in specific regions (which suggests the need to account for 

additional DMS drivers). Our work also highlights the shortcomings of interpolated DMS climatologies, caused by sparse 20 

and biased in situ sampling. Time series of DMSSAT between 2003-2016 in northern subpolar regions show wide interannual 

variability in the magnitude and timing of the annual DMS peak(s), demonstrating the need to move beyond the 

climatological view in studies of ocean-atmosphere interactions. By providing time- and space-resolved estimates of DMS 

emission, DMSSAT can leverage atmospheric chemistry and climate models and advance our understanding of plankton-

aerosol-cloud interactions in the context of global change. 25 

1 Introduction 

Ocean-emitted gases and particles control the number, size distribution and composition of aerosols in remote oceanic areas. 

These aerosols scatter sunlight and can act as cloud condensation nuclei that alter the radiative properties of clouds, both 

microscopic (cloud droplet number concentration and effective radius) and macroscopic (cloud abundance, albedo and 

lifetime). Interactions between natural aerosols and clouds are a major source of uncertainty in climate projections, 30 

confounding the calculation of natural and anthropogenic radiative forcing and the attribution of anthropogenic climate 
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change (Carslaw et al., 2013). Therefore, there is an urgent need to better understand and model the oceanic sources of 

aerosols, and to better resolve their variations at relevant spatial and temporal scales, from weekly through seasonal and 

interannual.  

 

The gas dimethylsulfide (DMS) is produced by marine microbial food webs in the sunlit layer of the ocean. With its 5 

emission currently estimated at 28 Tg S y-1, it contributes about 70% of natural sulfur emissions to the global atmosphere 

and a major portion of the marine emission of organic volatiles (Carpenter et al., 2012; Schlesinger and Bernhardt, 2013; 

Simó, 2011). The cloud-seeding activity of DMS and its potential role in climate regulation were first postulated three 

decades ago (Charlson et al., 1987; Shaw, 1983). The so-called CLAW hypothesis (Charlson et al., 1987) proposed that a 

negative feedback could operate between marine phytoplankton, DMS emission and cloud albedo, potentially regulating the 10 

Earth's climate. Posterior research showed that the mechanisms behind the potential loop are far more complex than initially 

envisaged. This, and the estimated low sensitivity of each step of the feedback to changes in its forcing factors, led (Quinn 

and Bates, 2011) to refute the CLAW hypothesis. Nevertheless, recent atmospheric observations –enhanced by new 

analytical techniques (Kulmala et al., 2014)– and modeling studies have shown instances where marine DMS controls sub-

micrometer aerosol formation in the Arctic (Leaitch et al., 2013), Antarctica (Yu and Luo, 2010) and the tropical South 15 

Pacific atmospheres (Modini et al., 2009). Moreover, Quinn et al. (2017) recently reported that non-sea-salt sulfate aerosols, 

derived from DMS, dominate cloud condensation nuclei populations over most of the global ocean. As a result, the 

occurrence of a "seasonal CLAW" in remote marine atmospheres is becoming increasingly conceivable (Levasseur, 2013; 

Vallina and Simó, 2007a). 

 20 

DMS is produced by marine microbial food webs through a complex network of biological interactions and chemical 

processes (Simó, 2004). Its primary source is the enzymatic and photochemical breakdown of dimethylsulfoniopropionate 

(DMSP), a multifunctional osmolyte that accumulates at high (mM) intracellular concentrations in some phytoplankton, 

especially haptophytes, dinoflagellates and some picoeukaryotes (Stefels et al., 2007). DMSP cleavage is catalyzed by a 

wide diversity of enzymes, called DMSP lyases, produced by some eukaryotic phytoplankton (Alcolombri et al., 2015) and 25 

bacteria (Curson et al., 2011). Breakage of phytoplankton cells through zooplankton grazing, viral attack and autolysis 

releases DMSP to the algal boundary layer and the dissolved phase and enhances DMS production (Simó, 2004; Stefels et 

al., 2007). Another process that contributes to DMS production is the diffusive release of DMS from phytoplankton cells, 

which proceeds almost instantaneously after intracellular DMSP cleavage by DMSP lyases or by photochemically produced 

radicals (Lavoie et al., 2015; Spiese et al., 2015). DMS budgets in the upper mixed layer (UML) indicate that, on average, 30 

about 90% of dissolved DMS is consumed by bacterial oxidation and UV-driven photolysis, and only 10% is emitted to the 

atmosphere through turbulent diffusion. The turnover time of DMS is typically faster than 4 days, such that DMS 

concentration reflects a subtle dynamic equilibrium between production and consumption processes (Galí and Simó, 2015). 
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Seawater DMS concentration controls the emission flux because the oceanic UML is supersaturated with respect to the 

atmosphere. This concentration varies over the seasonal cycle in response to the phenology and ecological succession of 

microbial species and their interplay with physical forcing factors, particularly irradiance and nutrient supply, which are in 

turn regulated by vertical mixing (Galí and Simó, 2015; Lizotte et al., 2012). Diatom-dominated phytoplankton blooms, 

typical of nutrient replete conditions at high latitudes, are characterized by low DMSP concentration per unit biomass and 5 

low DMS yield. Therefore, extremely high biomass is required for diatom blooms to be significant DMS sources. The 

opposite is true for microbial communities typical of stratified, nutrient depleted and highly irradiated surface waters, both at 

low and high latitudes (Galí and Simó, 2010; Lizotte et al., 2012). Under these conditions, two main factors act 

synergistically to increase DMS concentration (Galí and Simó, 2015; Vallina et al., 2008), namely: the higher contribution of 

DMSP-rich species to total phytoplankton biomass (Galí et al., 2015; Stefels et al., 2007); and the higher DMSP-to-DMS 10 

conversion yield at the microbial community level, possibly caused by the effects of nutrient and irradiance stress on 

phytoplankton DMS release (Galí et al., 2013; Stefels, 2000; Sunda et al., 2002, 2007; Vallina et al., 2008). The temporal 

decoupling between phytoplankton biomass, DMSP concentration and DMS concentration, termed the DMS summer 

paradox (Simó and Pedrós-Alió, 1999), is an essential feature that biogeochemical models strive to reproduce with mixed 

success (Le Clainche et al., 2010). 15 

 

With nearly 50,000 DMS measurements taken between 1972 and 2010, the global sea-surface DMS database 

(https://saga.pmel.noaa.gov/dms/) is a valuable resource for model development and validation. Gridded monthly 

climatologies (Kettle et al., 1999; Lana et al., 2011) calculated from this dataset are the standard DMS product used as input 

to atmospheric chemistry and climate models, therefore emphasizing the seasonal climatological view (Mahajan et al., 2015; 20 

McCoy et al., 2015). At the other end, the climatic role of DMS is often evaluated through climate change projections and 

extreme sensitivity tests (Grandey and Wang, 2015). In comparison, contemporaneous decadal scale DMS variability has 

received less attention. This gap can be filled using empirical remote sensing algorithms, a handful of which have been 

developed since the early 2000s (Tesdal et al., 2015) after some earlier prospective studies (Jodwalis and Benner, 1995; 

Thompson et al., 1990). Interestingly, data based DMS climatologies and those derived from empirical algorithms or 25 

prognostic biogeochemical models exhibit large discrepancies (Tesdal et al., 2015). Although it is tempting to attribute them 

to the poor predictive skill of the models, discrepancies may also stem from issues in the calculation of the climatology, 

related to data paucity and the use of some interpolation and extrapolation procedures. 

 

Here we present a new empirical remote sensing algorithm for DMS that proceeds in two steps: (i) estimation of the 30 

concentration of the phytoplanktonic DMS precursor, total dimethylsulfoniopropionate (DMSPt), from remotely sensed 

chlorophyll and light penetration, and from climatological mixed layer depth (MLD); (ii) estimation of DMS concentration 

from DMSPt and solar irradiance. Since the DMSPt sub-algorithm was described by Galí et al. (2015), here we focus on the 

relationship between DMS, DMSPt and photosynthetically available radiation (PAR) at the sea surface. We implement our 
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algorithm to produce a global DMS climatology, which we compare to the current DMS climatology (Lana et al., 2011) and 

to those derived from other remote sensing algorithms that follow similar rationales (Simó and Dachs, 2002; Vallina and 

Simó, 2007b). Finally, we implement our algorithm using 14 years of MODIS-Aqua satellite data in the subtropical and the 

subpolar North Atlantic and in the Northeast Pacific to illustrate and understand interannual DMS variability. 

2 Methods 5 

2.1 Datasets used for algorithm development and validation 

In situ concentrations of DMS, DMSPt and chlorophyll a (Chl), accompanied by ancillary data (bottom depth, temperature, 

salinity, wind speed), were downloaded from the global sea-surface DMS database. The latter was complemented with 

additional datasets recently obtained by the authors' teams. After quality control, the database had 41304, 3700 and 9182 

measurements for DMS, DMSPt and Chl, respectively, with 3637 DMS-DMSPt and 8141 DMS-Chl pairs. The in situ 10 

database was extended with geophysical and biogeochemical parameters, including satellite matchup data and climatological 

data following Galí et al. (2015). Detailed information regarding data sources, quality control and processing can be found in 

the SI and in Tables S1-S3. 

 

We performed satellite matchups using SeaWiFS (1997-2010) and MODIS-Aqua (2003-2012) retrievals of remotely sensed 15 

Chl (mg m-3, equivalent to µg L-1), vertical attenuation coefficient at 490 nm (Kd490, m-1), particulate inorganic carbon 

(PIC, mol m-3) and daily photosynthetically available radiation at the sea surface (PAR, mol photons m-2 d-1). To maximize 

the amount of available matchups, we merged daily and 8-day data from the SeaWiFS (1997-2010) and MODIS-Aqua 

(2003-2016) following a hierarchical search procedure. These merged satellite variables are hereafter designated with the 

SAT subscript (e.g. ChlSAT). Daily and 8-day sea surface temperature (SSTSAT, °C) from the AVHRR sensors was also 20 

matched to the database. 

 

The database was further extended with monthly climatological data: daily PAR from SeaWiFS (1997-2010 average); mixed 

layer depth (MLD, m) from the monthly MIMOC climatology (Schmidtko et al., 2013); bottom depth from the General 

Bathymetric Chart of the Oceans (GEBCO08); and sea-surface nitrate and phosphate concentrations (µM) from the World 25 

Ocean Atlas 2009 (WOA09). Nutricline depths were calculated from WOA09 vertical profiles as the depth where nitrate and 

phosphate first exceeded 1 µM and 0.4 µM, respectively. Nutricline depth estimations were robust to changes of ±50% in 

these concentration thresholds. 

 

The mean daily PAR in the upper mixed layer (PARMLD) was calculated as: 30 

 

PARMLD = [PARSAT / (Kd490SAT MLD)] [1 - exp(Kd490SAT MLD)] eq. 1 
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When satellite matchups were not available (before September 1997), we used climatological PAR from SeaWiFS (1997-

2010 average) in order to increase the temporal coverage of the PARSAT and PARMLD variables. Statistical analyses done 

with climatological or matchup PARSAT gave very similar results. This procedure was not followed with other variables (Chl, 

PIC, Kd490) that show wider interannual variations. 5 

 

2.2 Statistical analyses and data binning schemes 

All statistical analyses were conducted using (i) non-binned data; (ii) data binned by month and 5°x5° latitude-longitude bins 

(M5x5); and (iii) data binned by month and the 56 Longhurst biogeochemical provinces (MLongh) (Longhurst, 2010).  

MLongh binned data were further aggregated into six biomes: two Polar biomes (Arctic and Antarctic), two mid-latitude 10 

Westerlies biomes (Northern and Southern hemispheres) one Trades biome (tropical latitudes), and one global coastal biome 

(Fig. 1C). Variables with a right-skewed, approximate lognormal distribution, entered statistical analyses after log10 

transformation: DMS, DMSPt, DMS/DMSPt ratio, Chl, nitrate and phosphate concentrations. We conducted statistical 

explorations using both bin means and bin medians, generally obtaining similar results.  

 15 

To develop the DMS algorithm we analyzed the relationship between DMS, the DMS/DMSPt ratio and environmental 

variables from the extended database. The exploratory analysis included the calculation of pairwise correlation coefficients, 

followed by stepwise multiple regression. Pearson's linear correlation coefficients calculated on log10-transformed variables 

were higher than those calculated on the same non-transformed variables, and similar in magnitude to Spearman's rank 

correlations (which are independent of monotonic transformations). Thus, we report only Pearson's linear correlation 20 

coefficients (r).  

 

Based on the correlation analysis, we built several regression models where DMS was predicted as a function of in situ 

DMSPt concentration and one or more additional variables (Table 1). Significant terms were selected using stepwise 

regression with entrance and removal p-values set at 0.001 and 0.005, respectively. The logic for adding one variable at a 25 

time, rather than building a single initial model with all the predictor variables, is that the data matrix is incomplete, such that 

the size of data subset used for model fitting decreases rapidly when variables with sparse coverage are combined. New 

predictors were added in order of decreasing data availability, and each set of initial predictors was tested across the three 

degrees of data binning described above and three degrees of model complexity: linear without interactions, linear with 

interactions, and quadratic with interactions. This 3x3-nested structure provided a stringent test for the robustness of a given 30 

regression model. Improvements in model performance across different levels of data binning and model complexity were 

assessed based on the increase in adjusted r-square, R2
adj, and the decrease in root-mean-square error (RMSE) and the Akaike 

Information Criterion (AIC). 
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Predictive models were further optimized for global and regional domains using the bootstrap method followed by nonlinear 

optimization as described in SI section 4. Selected models were then validated using an independent dataset composed of in 

situ DMS measurements and satellite matchups (described in section 3.1.3) using a wide array of skill metrics: R2, RMSE, 

the mean absolute percentage error (MAPE), the slope of a major axis (type II) linear regression between observed and 5 

predicted fields (SlopeMA) and the percentage bias. All analyses were carried out using Matlab R2013b. 

2.3 Algorithm implementation 

The newly developed DMSSAT algorithm (Fig. 2) was implemented to produce (i) a monthly global DMS climatology and 

(ii) several regional time series with 8-day resolution for the period 2003-2016. Further details and data sources can be found 

in SI section 5 and Table S2. 10 

 

Global DMSSAT fields were computed using ocean color data from SeaWiFS (1997-2010 monthly climatology, 1/12° grid), 

SST from AVHRR and the MIMOC monthly MLD climatology. We established a reference DMSSAT run where Chl was 

computed with a band-ratio algorithm (OC4-OCI standard NASA algorithm) and the euphotic layer depth (ZeuSAT) was 

computed as the 1% penetration depth of 490 nm radiation (ZeuSAT = 4.6/Kd490). The impact of this choice was evaluated 15 

with sensitivity tests where ChlSAT and ZeuSAT were calculated with the semi-analytical algorithms of (Maritorena et al., 

2002) and (Lee et al., 2007), respectively, which are more appropriate in optically complex waters. Note also that, since 

climatological ChlSAT does not have observation gaps, the equation that estimates DMSPtSAT from PICSAT is not used (Galí et 

al., 2015). Global monthly DMSSAT fields were averaged onto 1° and 5° grids for mapping and comparison to other DMS 

climatologies: the interpolated L11 climatology (Lana et al., 2011), and the climatologies derived with the empirical 20 

algorithms of (Simó and Dachs, 2002) (SD02) and (Vallina and Simó, 2007) (VS07). The procedure used to produce the L11 

climatology and the bases of the SD02 and VS07 empirical algorithms are briefly described in section 3.2. 

 

Regional DMSSAT time series between 2003 and 2016 were computed using daily MODIS-Aqua data (4.64 km) combined 

with the MIMOC MLD climatology. As done for the global implementation, we produced DMSSAT fields using both band-25 

ratio and semi-analytical Chl products. We also performed a test comparing DMSPtSAT obtained with the MLD climatology 

vs. model-derived MLD time series, showing little DMSPtSAT sensitivity (Fig. S1). Since non-climatological satellite data 

contain gaps caused by cloudiness, we applied a binning and gap-filling procedure to obtain full coverage, such that the final 

regional time series had a resolution of 8 days and 27.8 km. We produced DMSSAT time series for the Bermuda Atlantic 

Time Series site (BATS; 31°40'N, 64°10'W) and for the entire northern hemisphere at latitudes >45°N. The latter dataset was 30 

then sampled at selected North Atlantic sites and at the Ocean Station P (OSP) in the NE Pacific (50°N, 145°W). Satellite 

time series were compared to the L11 climatology and to in situ DMS (and DMSPt, if available). These in situ data, kindly 
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provided by the BATS (Levine et al., 2016) and OSP (https://www.waterproperties.ca/linep/) teams, were not used in 

algorithm development. 

3 Results 

3.1 Development and validation of the DMS sub-algorithm 

3.1.1 Statistical exploration 5 

We analyzed the correlation between potential predictor variables and log10(DMS) or log10(DMS/DMSPt) (Table 1). This 

analysis systematically showed that (i) DMSPt was the best correlate of DMS (r = 0.46 to 0.65), and (ii) surface PARSAT or 

mean PAR in the upper mixed layer (PARMLD) were the best correlates of the DMS/DMSPt ratio (r = 0.35 to 0.67). These 

correlation patterns remained across different binning levels, suggesting that DMS can be predicted, to first order, by the 

concentration of its phytoplanktonic precursor compound and by the PAR-dependent enhancement of DMSPt-to-DMS 10 

conversion. It is also noteworthy that the correlation between day length and the DMS/DMSPt ratio was weak or non-

significant. This supports the causal relationship between PAR and the DMS/DMSPt ratio and discards other factors that 

might follow synchronous seasonal cycles. 

 

Guided by the correlation patterns, we established a base regression model expressed by the equation: 15 

 

log10DMS = α + β log10DMSPt + γ PAR  eq. 2 

 

This model explained between 50% and 57% of log10(DMS) variance with an increasing level of data binning, and the 

corresponding RMSE ranged between 0.35 and 0.21 (Table 2).  20 

 

We assessed whether the base model could be significantly improved by adding one new variable at a time and/or increasing 

model complexity. We started by adding a variable X to a linear model without interactions of the form log10DMS = α + β 

log10DMSPt + γ PAR + δ X. X was chosen among the variables showing higher correlations to either DMS or DMS/DMSPt 

(Table 1): SST, nitrate concentration, nitracline depth, salinity, wind speed and PICSAT. With non-binned data all these 25 

variables entered regression models with significant coefficients, but only salinity, wind speed and PICSAT produced 

significant decreases in RMSE and AIC. With MLongh binned data, only SST and PICSAT entered with significant 

coefficients. Yet, none of the additional variables improved simultaneously the R2adj, RMSE and AIC skill metrics with 

respect to the base model. Increasing model complexity through addition of interaction and quadratic terms, or by adding a 

fourth predictor variable, generally resulted in minor improvements or erratic changes in model performance (results not 30 
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shown). Invariably, DMSPt and PAR were the only variables with highly significant coefficients (p << 10-10) regardless of 

the binning scheme and the additional predictors included (Table S4).  

 

As a corollary, the use of PARML instead of PARSAT slightly degraded the predictive power (R2
adj = 0.47 and RMSE = 0.37 

for non-binned data; Table S3). Although PARMLD is a priori a more realistic metric of light exposure, it is possible that the 5 

use of climatological MLD degraded the PARMLD estimations. Another potential explanation is the episodic nature of 

oceanic vertical mixing, which requires the distinction between the actively mixing layer —defined by turbulence 

thresholds— and the mixed layer —as detected by regular temperature-salinity profiles (Sutherland et al., 2014). This might 

imply that, on occasions, mean light exposure at the sea surface is better approximated by surface PARSAT than by PARMLD. 

Finally, we cannot discard that the nonlinear relationship between DMS, DMSPt and PAR embodied in eq. 2 (Fig. 2) is 10 

implicitly accounting for the effects of vertical mixing and water clarity on plankton light exposure. After these 

considerations we discarded the use of PARMLD as a predictor in our algorithm, and focused on optimizing eq. 2. 

3.1.2 Implications of the model structure 

Here we analyze the physical meaning of eq. 2 coefficients in view of their optimization for predictive purposes (3.1.3). 

First, it must be noted that the log10DMSPt coefficient (β) is smaller than 1 regardless of the binning applied (Table 2). For a 15 

constant PAR, this implies that DMS increases more slowly than DMSPt (Fig. 3A) and that the DMS/DMSPt ratio decreases 

non-linearly with increasing DMSPt (Fig. 3B). In biogeochemical terms, this implies that the PAR-driven increase of the 

DMS/DMSPt ratio is stronger in DMSPt-poor conditions. In biogeographic terms (Fig. 1), highest DMS/DMSPt ratios are 

found in oligotrophic areas of the Trades biome, where low DMSPt concentrations prevail (<20 nM). Low DMSPt 

concentrations are also found in winter at high latitudes in deeply mixed waters, but the corresponding low irradiance results 20 

in DMS/DMSPt <0.05. At the high DMSPt concentrations that occur at high latitudes in summer (>100 nM), the 

DMS/DMSPt ratio is generally <0.1.  

 

Second, we note that the y-intercept (α), the log10DMSPt coefficient (β) and the PAR coefficient (γ) vary in a consistent 

manner as the binning spatial scale increases (Table 2). To further explore the interrelationship between the model 25 

coefficients, we used the bootstrap method to produce 105 sets of regression coefficients for the MLongh dataset. The 

scatterplots between α, β and γ resulting from the 105 bootstrapped regressions confirm that covariation between the 

coefficients is non-random (Fig. S2), and suggest that there are two main avenues for optimizing eq. 2: (i) increasing 

(decreasing) the PAR coefficient γ, which increases (decreases) the DMS/DMSPt ratio in proportion to PAR regardless of 

DMSPt concentration; (ii) increasing (decreasing) the DMSPt coefficient, which increases (decreases) DMS more strongly in 30 

DMSPt-rich conditions. The intercept (α) acts to adjust the magnitude of DMS concentrations by a fixed proportion 

everywhere. These trade-offs should be kept in mind when optimizing our model for global or regional implementation. 
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3.1.3 Optimization and validation 

By definition, least squares regression minimizes the RMSE, but it has been shown that regression models derived in this 

way do not necessarily have the best predictive skill (Jolliff et al., 2009). Therefore, we devised an alternative nonlinear 

optimization procedure (SI section 4). To obtain realistic solutions, we constrained the optimized coefficients to the 

confidence intervals derived from the bootstrapped regressions. The resulting optimal model had higher DMSPt (β) and PAR 5 

(γ) coefficients and a smaller y-intercept (eq. 2f; Fig. S2), and moved the modeled DMS concentration closer to the 1:1 

agreement line without degrading neither RMSE nor R2 (Table 2). 

 

We validated the different versions of eq. 2 (Table 2) by comparing DMSSAT against in situ DMS using an independent 

subset of the database. Since the complete DMS algorithm proceeds in two steps (Fig. 2), its validation must take into 10 

account uncertainty in variables used as input to the DMSPtSAT sub-algorithm. Galí et al. (2015) showed that, apart from the 

inherent algorithm uncertainty, most uncertainty in DMSPtSAT (RMSE ≤ 0.3 in log10 space) results from error in ChlSAT. 

Thus, the validation subset was defined according to three criteria: (i) satellite match-up data used as input to the algorithm 

(ChlSAT, Kd,490, PARSAT and SSTSAT) were available (see Fig. 2); (ii) in situ DMSPt was not available —thus excluding the 

data used for model fitting; (iii) in situ DMS and Chl were available. 15 

 

We used in situ Chl concentration to constrain the uncertainty in ChlSAT used as input to the DMSPtSAT sub-algorithm. 

Indeed, this procedure progressively reduced the size of the validation subset as the maximum tolerated ChlSAT error 

decreased (Fig. 4). Uncertainty arising from PARSAT could not be assessed because the current database lacks in situ PAR 

measurements. Frouin et al. (2003) reported an error of ±15% (<10% for weekly and monthly periods), with negligible bias 20 

for PARSAT, suggesting it is a minor source of uncertainty. Fig. 4A summarizes the validation results for the regression 

model based on MLongh binning (eq. 2e) and the optimized model (eq. 2g). Supporting our assumption, the skill metrics of 

the DMSSAT algorithm improved as ChlSAT RMSE decreased (Fig. 4). Other skill metrics (not shown in Fig. 4) showed 

comparable trends.  

 25 

The optimized model coefficients (eq. 2f) reduced the RMSE and increased R2 with respect to the regression-derived 

coefficients, achieving a maximal R2 of 0.52 and minimal RMSE of 0.21 for error-free ChlSAT (non-binned data; Table S5). 

The global-scale optimized DMSSAT had a normalized standard deviation of 1.1 (log10 space), meaning that the spread of 

modeled DMS nearly equals that of in situ DMS concentrations. In linear space, R2 increased from 0.09 to 0.21 and RMSE 

decreased from 8.5 to 2.8 nM as ChlSAT error decreased. These linear-space statistics might be interpreted as a sign of poor 30 

performance, but it should be noted that they were strongly affected by a small fraction of highly biased estimations. 

Removing the most biased estimations (the <8% beyond a factor of 3 from real measurements; Fig. 4) increased the linear-

space R2 to 0.42–0.59 and decreased the RMSE to 1.0–2.4 nM across the full range of ChlSAT error, with MAPE of 30–42% 
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and relative bias of -3% to 9%. These statistics illustrate the good performance of the algorithm and highlight the better 

robustness of log-space statistics. 

3.2 Global climatologies 

After verifying the good performance of the algorithm, we implemented it using the global climatology from the SeaWiFS 

sensor. Maps of the mean seasonal DMSSAT concentration and the corresponding zonal averages (latitudinal profiles) are 5 

displayed in Fig. 5. In each hemisphere, DMS concentrations around ~2.5 nM prevail during the astronomic spring and 

summer, decreasing to around 1 nM in fall and <1 nM in winter. The seasonal cycle has wider amplitude at high latitudes 

and is nearly flat in the tropical oceans (Fig. 6 and 7). Regional enhancement of DMS concentrations occurs in some coastal 

and shelf areas, equatorial and eastern boundary upwellings, close to the subtropical front in austral summer (40°S), and in 

the subpolar North Atlantic in boreal summer (60°N). The global mean area-weighted DMSSAT concentration is 1.63 nM. 10 

This figure decreases by less than 5% when semi-analytical ChlSAT and ZeuSAT products are used instead of our reference 

products (Table 3). 

3.2.1 Comparison to the L11 climatology 

The L11 DMS climatology (Lana et al., 2011), as well as prior climatologies (Kettle et al., 1999; Kettle and Andreae, 2000) 

was calculated using an objective interpolation procedure. An initial template, called first-guess field, was obtained by 15 

calculating the monthly mean DMS in each Longhurst province. The gaps were filled through temporal interpolation and, in 

provinces with too few documented months, the seasonal cycle was extrapolated by scaling that of neighbor provinces. 

Objective interpolation was then applied by searching measurements within a 555 km radius, weighting them inversely to the 

distance from a given grid point, and the resulting global fields were repeatedly smoothed. 

 20 

The global mean area-weighted DMSL11 concentration is 2.44 nM, 1.5-fold higher than DMSSAT (Table 3). As shown in Fig. 

5-7, the disagreement between the DMSL11 and DMSSAT climatologies varies depending on the regions and the spatial-

temporal scales compared. Starting with the coarsest scale, we observe that the seasonal latitudinal profiles (zonal means) of 

DMSL11 and DMSSAT have very similar shapes. This can be easily emphasized by multiplying DMSSAT by 1.5 to "correct" 

the 50% offset (Fig. 5) (or, what is the same, increasing α by log10(1.5) in eq. 2). The best agreement in the latitudinal 25 

profiles is observed in June through August, whereas the strongest disagreement occurs polewards of 50°S during the austral 

summer, when DMSSAT is lower than DMSL11 by at least twofold. Comparison of the DMSSAT and DMSL11 climatologies by 

means of Hovmöller diagrams (Fig. 7) shows a remarkable qualitative agreement in their month-latitude patterns, except for 

the polar austral summer. Figs. 6-7 also reveal smaller disagreements in the Arctic Ocean in winter-spring and in the 

equatorial band during most of the year, with lower concentrations in DMSSAT in both cases. The most striking disagreement 30 

appears when DMSSAT and DMSL11 are compared by means of seasonal anomaly maps (Fig. 5). The sign of the DMSSAT-
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DMSL11 anomaly changes from positive to negative in a patchy pattern, often following the boundaries of the Longhurst 

biogeochemical provinces.  

3.2.2 Comparison to the SD02 climatology 

The SD02 algorithm (Simó and Dachs, 2002) was designed to predict DMS from MLD and ChlSAT using two different 

equations depending on the Chl/MLD ratio: 5 

 

DMS = –ln(MLD) + 5.7   Chl/MLD < 0.02 (eq. 3a) 

DMS = 55.8 Chl/MLD  + 0.6  Chl/MLD ≥ 0.02 (eq. 3b) 

 

such that DMS increases linearly with the Chl/MLD ratio in stratified productive conditions (e.g. high latitudes in summer) 10 

and inversely with MLD in typical oligotrophic conditions. Validation of SD02 with the same dataset used for DMSSAT 

indicates that it explains less variance (log10 R2 of 0.22–0.30) but has similar RMSE, MAPE and bias (Table S5). Figs. 6-7 

show that the SD02 estimates are in good agreement with the L11 climatology at tropical and temperate latitudes. An 

exception is found in the Southern Westerlies biome, where prevailing deep vertical mixing and low Chl cause SD02 to 

underestimate DMS throughout the productive season. A feature of SD02 is the overestimation of DMS in high Northern 15 

latitudes through late summer and fall, caused mainly by the shallow MLD due to freshwater-driven stratification. As 

DMSSAT, DMSSD02 suffers a strong negative bias throughout the Antarctic biome during the productive season (November 

through February).  

3.2.3 Comparison to the VS07 climatology 

The VS07 algorithm (Vallina and Simó, 2007) relies on the observed linear relationship between DMS concentration and the 20 

solar radiation dose (SRD) in the upper mixed layer in the global ocean, according to the equation: 

 

DMS = 0.492 + 0.019*SRD  (eq. 4) 

 

SRD is analogous to PARMLD (eq. 1), but replacing PARSAT by total shortwave irradiance (EdSW; W m-2). Here we 25 

implemented VS07 with two variations: (i) we used Kd490SAT instead of a fixed Kd (note that in phytoplankton-rich and 

continentally-influenced waters, Kd490SAT is generally higher than the fixed Kd = 0.06 m-1 used by (Vallina and Simó, 

2007)); (ii) we estimated EdSW from PARSAT by converting the latter to units of W m-2 (Morel and Smith, 1974) and then 

applying a constant EdSW/PARSAT ratio of 1/0.43 (Kirk, 2011). VS07 shows poorer performance than DMSSAT and SD02 

when validated with the same dataset (Table S5). Figs. 6-7 show that VS07 produces rather uniform DMS fields compared to 30 

the other climatologies. VS07 performs very well in the Westerlies biomes, particularly in the northern hemisphere, but 

invariably overestimates (underestimates) DMS in the Trades (Polar) biomes.  
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3.3 Regional DMSSAT time series 

3.3.1 Subpolar Atlantic and Pacific 

We used MODIS-Aqua data to produce a 14-year DMSSAT time series (and the corresponding climatology) for the northern 

hemisphere at latitudes >45° N. In this regional implementation we used a different set of coefficients, obtained from 

regression of M5x5 binned data restricted to latitudes >45° N (eq. 2g). In this case, further optimization did not lead to 5 

significant improvement. We then sampled the resulting time series in some representative regions: three rectangles with an 

area of ~200,000 km2 each, located along the 50°N–56°N band in the North Atlantic, and the Ocean Station P (OSP, 50° N, 

145° W) in the NE Pacific. 

 

We selected the subpolar North Atlantic because it is one of the regions where the algorithm works best (Fig. S3), lending 10 

credit to observed variability patterns. Fig. 9 shows DMS seasonal cycles in three selected areas with a relatively high 

density of in situ DMS measurements: (a) the deep waters of the northwest Atlantic drift, (b) the shelf break west of Ireland, 

and (c) the shallow Southern North Sea. We observe a good agreement between the 14-year DMSSAT climatology and the 

L11 climatology, except in the Southern North Sea where DMSSAT is too high through summer and fall. The most salient 

result is however the wide interannual variability of the DMSSAT seasonal cycles. Mean DMSSAT concentration during the 15 

productive season can vary by two- to threefold between years (see variability metrics in Fig. 9), and the annual DMSSAT 

peak can occur within a temporal window of 2–3 months. Although years with a major peak in spring-summer are the norm, 

a second peak in late summer is not unusual. Satellite data also suggest wide geographic variation in the temporal lag 

between the annual peaks of DMSSAT, DMSPtSAT and ChlSAT, up to four months in the Southern North Sea. 

 20 

The same MODIS-Aqua dataset was used to analyze the mean seasonal cycle and the interannual variability at Ocean Station 

P (Figure 10), where DMS has been measured two to three times per year (around February, June and August) since 1996. 

DMSSAT captured well in situ concentrations in February and June but suffered a low bias in August. Examination of August 

measurements during the 2005-2016 period suggests the existence of two regimes: 8 years have in situ DMS of 6.6 ± 1.1 

nM, about twice as high as DMSSAT, and 4 years have much higher in situ DMS of 16.1 ± 4.8 nM, about six fold higher than 25 

DMSSAT. Local tuning of eq. 2 using OSP data cannot increase DMS in August-September without strongly degrading its 

performance in other months.  

 

Note that these time series were calculated using ChlSAT derived from the semi-analytical GSM algorithm. Using the band-

ratio OC3 Chl algorithm gave very similar results in the oceanic regions but 70% higher concentrations in the shallow 30 

Southern North Sea, possibly due to interference of colored dissolved organic matter and sediments on OC3 Chl retrieval 

(data not shown). 
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3.3.2 Bermuda Atlantic Time Series 

Using the globally tuned coefficients (eq. 2f), DMSSAT reproduced the shape of the mean seasonal cycle at the oligotrophic 

BATS station but underestimated DMS by around twofold between June and October (Fig. 10D-E). Fig. 10 F shows that part 

of this bias can be attributed to the low bias of DMSPtSAT. However, replacing DMSPtSAT by in situ DMSPt raised DMSSAT 

by only 17%, indicating that most of the underestimation is caused by the DMS sub-algorithm. Optimizing the coefficients 5 

using local data (eq. 2h; see Appendix A) improved the model-data fit by decreasing the DMSPt coefficient (thus weakening 

the DMSPt dependence) and increasing the PAR coefficient. Indeed, different studies have shown that irradiance suffices to 

explain most of the DMS seasonal cycle at BATS (Galí and Simó, 2015; Toole and Siegel, 2004; Vallina and Simó, 2007). 

Interestingly, the locally tuned DMSSAT is in excellent agreement with in situ data throughout 2007, but the underestimation 

persists in September and October of 2006 and 2008.  10 

4 Discussion 

Here we explore the strengths and weaknesses of our novel approach focusing on two aspects, from technical to general: the 

methodological and geo-statistical issues that affect DMS algorithms and climatologies (4.1), and the capacity to account for 

relevant biogeochemical processes and explain interannual changes using satellite data (4.2).  

4.1 Geo-statistics, remote sensing algorithms and interpolated climatologies 15 

Global DMS fields estimated by the L11 climatology and by the DMSSAT algorithm show remarkable geographic differences 

(Fig. 5). Particularly, changes in the sign of the DMSSAT–DMSL11 anomaly often follow the boundaries of the Longhurst 

biogeochemical provinces. In our view, the reasons for the disagreement are many fold: (1) the right-skewed distribution of 

DMS concentrations (Kettle et al., 1999), (2) the small amount of monthly data available in many biogeochemical provinces, 

(3) the absence of repeat measurements in most oceanic regions, (4) the objective interpolation procedure used to calculate 20 

the L11 climatology, (5) the fitting of the DMSSAT algorithm in log space, and (6) the inherent bias of certain satellite data 

products in specific regions. In the next paragraphs we show how statistical shortcomings of the in situ DMS database 

compromise the robustness of interpolated climatologies such as L11, as evidenced by satellite matchup data and satellite-

derived DMS gridded fields. 

 25 

First, the sea-surface DMS database is biased towards productive conditions, which is illustrated by comparing SeaWiFS-

retrieved Chl concentration in the global ocean and in the database (Fig. 8A). The SeaWiFS 1997-2010 ChlSAT climatology, 

which overlaps in time with 55% of the DMS database measurements, has a global median (mean) of 0.17 (0.53) µg L-1. In 

the subset of the DMS database with available SeaWiFS match-ups, ChlSAT has a median (mean) of 0.56 (1.10) µg L-1, two 

or threefold higher than the global statistics. If we assume that satellite matchups represent a random sample of the DMS 30 

database, this implies a sampling bias towards high DMS concentrations, given the positive correlation between Chl and 
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DMS (Fig. 8B). The bias is bigger when the comparison is restricted to the spring-summer semester of each hemisphere, 

with a median ChlSAT of 0.19 for the SeaWiFS climatology and 0.74 for the SeaWiFS database matchups. This is the period 

when DMS peaks and has more influence on mean annual DMS concentration. 

  

Second, sampling bias is intertwined with the non-normal right-skewed statistical distribution of sea-surface DMS 5 

concentrations and the poor spatial resolution of most in situ DMS datasets. Spatial averaging, justified by data scarcity, is 

appropriate when applied over small or sufficiently homogeneous regions. However, when applied over a large Longhurst 

province affected by sampling bias, the resulting gridded fields may overestimate DMS over most of the province. This 

seems particularly problematic in high-latitude biomes and coastal areas with sharp productivity gradients at smaller scales, 

where DMS is more tightly correlated to phytoplankton biomass. In low latitude oligotrophic areas where DMS is uncoupled 10 

from Chl and has small spatial variability (Royer et al., 2015), the objective interpolation method seems appropriate. As 

illustrated in Fig. 6, mean DMS concentration in a given month and biome is systematically higher than the corresponding 

median. In most biomes, DMSSAT tends to follow the monthly medians of in situ data, whereas DMSL11 generally follows –

by construction– the monthly means. Since DMSSAT has a small positive or negative bias when validated on non-binned data 

(Table S5), our analysis suggests that the L11 climatology and its predecessors suffer a global positive bias. 15 

 

The third major issue is the scarcity of DMS measurements repeated in different years. At the MLongh binning level, 42% of 

the province-month bins contain measurements from a single year, 21% from two years, and 37% from more than three 

years. Thus, data from a single or a few years are often assumed representative of the mean ecosystem state in interpolated 

climatologies, which is probably not the case in regions with wide interannual variability or long-term trends (Vantrepotte 20 

and Mélin, 2011). While this does not necessarily bias global DMS fields, it can produce artificial seasonal cycles. For 

example, L11 suggests the existence of early spring and fall DMS peaks in the North Atlantic drift area, which result from 

interpolation from neighbor regions (Fig. 9A). In contrast, DMSSAT suggests these are improbable (spring) or infrequent 

(fall) features. Another relevant example is found at OSP, where the DMSL11 estimates, based on measurements taken before 

2003, are in poor agreement with measurements made between 2005-2016. In February and June, DMSSAT is in better 25 

accordance with in situ DMS data. Hence, caution has to be taken when comparing DMS measurements, their derived 

climatological products, and independent model estimates that are not collocated in time. This may partly explain the poor 

correlation between modeled DMS climatologies, on one hand, and the DMS database and DMSL11 climatology, on the other 

(Tesdal et al., 2015). Note that the latter study compared DMS fields binned into monthly 5°x5° boxes (M5x5), such that 

82% of the bins contained measurements from a single year. 30 

 

DMS fields based on satellite-observed properties are in better accordance with natural gradients in plankton abundance 

(biogeography, phenology) and environmental forcing, as long as the models can account for the driving factors. Indeed, our 

satellite approach is not devoid of problems. The most obvious of them is the propagation of error in ChlSAT up to DMSSAT 
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estimates. The negative bias in ChlSAT in the Antarctic biome, estimated at more than 50% by Johnson et al. (2013), and 56% 

in our matchup dataset, causes a large negative bias in DMSSAT (and also DMSSD02) (Fig. 5-7). This indicates that the 

DMSPtSAT sub-algorithm, rather than eq. 2 coefficients, would require important tuning for its application in the Antarctic 

Ocean. Our algorithm also suffers from built-in limitations that are explored below.  

4.2 How far can we go with empirical remote sensing algorithms? 5 

The DMSSAT algorithm captures in situ variability (Fig. 4) using a small set of predictor variables (Fig. 2). Moreover, it 

reproduces the mismatch between DMS and Chl such that, at a given ChlSAT concentration, diagnosed DMS can vary by up 

to 40-fold (Fig. 8D). This mismatch is stronger than that produced by the SD02 or the VS07 algorithms. The correlation 

between DMSSAT and ChlSAT is 0.34 in the global climatology, similar to that found in the global database (r = 0.39), and 

perhaps more realistic than that between the DMSL11 climatology and the SeaWiFS Chl climatology (r = 0.15) (Fig. 8). 10 

Another positive feature of our algorithm is its capacity to produce a DMS peak in summer across different latitudes, the so-

called DMS summer paradox, thanks to the progressive dissociation between ChlSAT and DMS imposed by the two-step 

structure (Fig. 2) and the nonlinear relationships embodied in eq. 2 (Fig. 3). However, it fails to capture the high 

DMS/DMSPt ratios that occur in some regions between midsummer and early fall (Figs. 6 and 10), as discussed below. 

 15 

Figs. 6-7 shows that, compared to DMSSAT, the SD02 and VS07 algorithms produce higher DMS (and sometimes too high 

DMS) well into fall. This suggests that algorithms relying on MLD (SD02) or MLD combined with irradiance and water 

transparency (VS07) are better able to delay the annual DMS peak with respect to the summer solstice. Examination of the 

BATS and OSP time series (Fig. 10) gives insights into this issue. At both sites, the summer MLD is stable at about ≤20 m 

and deepens slowly in late summer (Levine et al., 2016; Steiner et al., 2012). Together with declining irradiance, this acts to 20 

decrease PARMLD. Thus, using PARMLD instead of surface PAR would not delay appreciably the decline of modeled 

DMS/DMSPt ratios through the summer, and other factors need to be invoked. 

 

At BATS, some modeling studies proposed nutrient limitation as an important factor behind the seasonal mismatch between 

DMSPt and DMS, besides irradiance (Vallina et al., 2008). Polimene et al. (2011) proposed a mechanism whereby 25 

phosphorus and nitrogen limitation would increase the bacterial DMSP-to-DMS conversion yield in late summer. Belviso et 

al. (2012) specifically pointed out phosphorus deficiency as the driver of the Sargasso summer paradox through its effects on 

nanophytoplankton DMSP content and bacterial DMS yield. With these model results in mind, we tried to factor phosphate 

and nitrate limitation into our regression models using different variables: nutrient concentrations, nutricline depths (Table 

S4) and nutrient limitation factors estimated according to Michaelis Menten kinetics (not shown). However, none of the 30 

tested variables improved the regression models significantly. Moreover, nutrient availability (limitation) terms generally 

entered regression models with positive (negative) coefficients, even when regressions were restricted to oligotrophic low 

latitudes. This implies that nutrient limitation of phytoplankton growth globally acts to decrease DMS, offsetting nutrient 
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stress responses that increase DMS. The irregular occurrence of high DMS at BATS in late summer in different years, and 

the good performance of DMSSAT in the Southern Westerlies biome (which should also display the effects of nutrient 

limitation), likely discard nutrient stress as the unique explanation. 

 

Analysis of the OSP time series also yields valuable information. While in situ DMS is fairly predictable by DMSSAT in 5 

February and June, the variable DMS peak occurring around August is strongly underestimated. Since OSP is an iron-

limited, high-nutrient low-chlorophyll regime, nitrate or phosphate limitation cannot explain the high DMS/DMSPt ratios in 

late summer. By analyzing pigment data and performing sensitivity tests, Steiner et al. (2012) proposed dinoflagellate 

abundance, and the related increase in DMSP, as a plausible explanation. Interestingly, the DMSPtSAT sub-algorithm 

produces the annual DMSP peak in August-September at OSP, in phase with the in situ DMS peak, and this despite that 10 

DMSPtSAT does not explicitly resolve phytoplankton taxonomy (Galí et al., 2015). DMSPtSAT cannot be systematically 

validated at OSP, but the available DMSPt measurements (Levasseur et al., 2006; Royer et al., 2010) do not suggest strong 

underestimation. The striking late summer variability at OSP is presently not captured by biogeochemical models (Steiner et 

al., 2012) or satellite algorithms, and it remains unanswered whether it simply reflects too low sampling frequency, or it is 

caused by a mechanism that switches on/off depending on environmental conditions on a given year, or by the variable 15 

location of oceanic fronts in response to circulation patterns. 

 

In summary, our analysis indicates that additional factors may be needed to better reproduce DMS/DMSPt ratios in specific 

regions, but the inclusion of additional terms in eq. 2 lacks strong statistical support when applied globally, at least with the 

current dataset. Tuning the eq. 2 coefficients is a workable alternative to better reproduce the mean seasonal cycle in certain 20 

regions (Fig. 10), and eq. 2 could perhaps be generalized in a way that allowed its coefficients to vary across different 

biogeochemical regimes. The addition of new satellite variables as predictors, carrying additional retrieval uncertainty, could 

increase the DMSSAT uncertainty. More obviously, climatological variables such as the WOA nutrient concentrations are not 

appropriate to produce time series, and their use in remote sensing algorithms should be minimized. The only climatological 

variable used in our algorithm is MLD, which enters mainly as a categorical variable (Galí et al., 2015), such that DMSPtSAT 25 

is robust to MLD uncertainties (Fig. S1). Biotic interactions like microzooplankton grazing (Steiner et al., 2012) and 

bacterial metabolism (Levine et al., 2016; Royer et al., 2010) are indeed good candidates to explain strong deviations from 

the mean relationship between DMS, DMSPt and irradiance. However, they can hardly be included in empirical algorithms.  

 

The question of the "optimal model complexity" is a pervasive one in biogeochemistry, and the right answer may depend on 30 

the purpose of each study.  The algorithms tested here showed improved qualitative and quantitative performance with 

increasing complexity (VS07 < SD02 < DMSSAT). VS07 failed to capture DMS patterns outside the subtropical band, 

possibly due to its inability to modulate the DMS-irradiance relationship depending on phytoplankton biomass. Inclusion of 

phytoplankton biomass-dependent predictors (SD02), and of implicit taxonomic information through DMSPtSAT estimation 
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(DMSSAT), improved algorithm skill in productive regions, where DMS shows wider seasonal cycles and sharper spatial 

gradients. More sophisticated approaches may be needed to achieve significant improvements in model skill, but they also 

suffer from major uncertainties. For example, neural networks were successfully used to estimate DMS in the Arctic 

(Humphries et al., 2012), but their predictive power might be compromised by the small training datasets, the use of 

climatological variables and the lack of a mechanistic basis. Complex biogeochemical models with satellite data assimilation 5 

are powerful tools for resolving interannual DMS variations, but reliance on several tens of poorly constrained parameters 

currently limits their skill (Le Clainche et al., 2010; Galí and Simó, 2015; Tesdal et al., 2015). A pathway of intermediate 

complexity that deserves further exploration is the remote sensing diagnosis of DMS using a simplified steady-state budget 

equation, which can account for biotic and abiotic DMS sources and sinks (Galí and Simó, 2015).  

5 Conclusions and outlook 10 

Sensors on polar-orbiting satellites provide synoptic global-scale observations of the ocean surface every few days, and are 

thus perfectly suited to resolve spatial and temporal variations in DMS concentration as long as they can retrieve the relevant 

proxy variables. Our algorithm reproduces the main spatial-temporal features of sea-surface DMS(P) concentrations with 

remarkable skill using only climatological MLD and satellite retrieved Chl, euphotic layer depth and PAR. Yet, it cannot 

produce high DMS/DMSPt ratios in late summer, which suggests that irradiance cannot fully explain variability in 15 

DMS/DMSPt ratios in some regions. In the Antarctic Ocean, bias in satellite retrieved Chl causes a strong negative bias in 

DMSSAT, which should be solved through regional tuning. 

 

When compared against the current L11 DMS climatology, the DMSSAT climatology shows similar latitudinal profiles but 

disagrees in the basin-scale patterns. Examination of spatial DMS statistics highlights possible shortcomings in the L11 20 

climatology caused by the combination of sparse and biased sampling, the right-skewed distribution of DMS, and the 

interpolation procedures used. High-resolution measurements of DMS(P), if validated against traditional standard techniques 

(Royer et al., 2014), will help improving interpolated climatologies and models. 

 

The global mean area-weighted DMSSAT concentration is 1.63 nM, 33% lower than DMSL11. Excluding the Antarctic Ocean, 25 

the difference is -22%. Given the linear relationship between global mean DMS concentration and emission (Tesdal et al., 

2015), this suggests a global emission of about 16–18 Tg S y-1, in the low end of current estimates. Global-scale DMSSAT 

fields are insensitive to the choice of different Chl and euphotic depth satellite products. However, the differences are larger 

in optically complex waters with continental influence, where semi-analytical products should be used. 

 30 

The main strengths of our approach are its flexibility, allowing for regional tuning, and the minimal computing cost. Unlike 

climatologies constructed from the database, the satellite-based algorithm allows to explore interannual change. 

Implementation of DMSSAT in the subpolar Atlantic between 2003 and 2016 illustrates the wide interannual variability in the 
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timing and magnitude of the annual DMS peak(s) over large areas. This opens new avenues for studying the imprint of 

oceanic aerosol precursors on cloud properties using simultaneous ocean-atmosphere satellite observations (Meskhidze and 

Nenes, 2006). If coupled to atmospheric measurements and numerical models, DMSSAT enables studying the effects of 

contemporaneous DMS variability on atmospheric chemistry and clouds, which could lead to a better understanding of 

intricate aerosol-cloud interactions. Further work is warranted to analyze marine DMS emission variability patterns in 5 

regions where climate is particularly sensitive to DMS, such as the Southern Ocean and the Arctic.  

Data availability 
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Figure 1: Relationship between DMS, DMSPt and PAR across oceanic biomes. (a) DMS vs. DMSPt; (b) DMS/DMSPt 

vs. mean daily irradiance (PAR) at the sea surface; (c) Longhurst biogeochemical provinces and biomes. In (a) and (b) small 
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grey dots represent individual data points and large colored dots represent the median in a given Longhurst biogeochemical 

province and month and the corresponding interquartile ranges. Province-month medians are colored by biome following the 

map in (c), which also shows the amount of DMS-DMSPt-PAR measurements available in each biome. The R2 and data 

counts outside and inside parentheses correspond to non-binned data and province-month binned data, respectively. 

Regression lines in (a) and (b), calculated with binned data, are only illustrative. 5 
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Figure 2: Scheme of the DMSSAT algorithm. The algorithm proceeds in two steps: the DMSPt sub-algorithm (described by 

Galí et al., 2015) and the DMS sub-algorithm (described in this study). Dashed lines mark the PIC-based equation of the 

DMSPt sub-algorithm, which in practice is not used when gap-free satellite Chl fields are used as input. 5 
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Figure 3: Relationship between DMS, DMSPt and PAR as represented in the algorithm. (a) DMS vs. DMSPt as a 

function of PAR; (b) DMS/DMSPt ratio vs. PAR. Lines correspond to the model predictions for different PAR levels, and 

colored circles represent the medians of in situ data binned by Longhurst province and month. 
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Figure 4: Algorithm validation results constrained by the uncertainty in satellite-retrieved Chl. (a) eq. 2e, derived from 

regular multiple regression; (b) eq. 2f, obtained through an optimization procedure. The scatterplots compare non-binned 

data and model predictions, color-coded depending on the maximum tolerated error in ChlSAT with respect to Chl in situ, as 5 

shown in the x-axis of the center plots. The center plots show the performance of the DMS algorithm for increasing error in 

ChlSAT, evaluated with different skill metrics: the log10 space R2 and RMSE (left y-axis) and the linear space MAPE (right y-

axis). N increases from 86 to 1293 as the tolerated ChlSAT error increases. 
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Figure 5: Global DMSSAT concentration fields by season. (a) December-February (DJF); (b) March-May (MAM); (c) 

June-August (JJA); (d) September-November (SON). Each row contains mean latitudinal profiles for the L11 climatology, 

DMSSAT, and 1.5×DMSSAT (left); DMSSAT concentration maps (center); and maps of the % difference between DMSSAT and 5 

the L11 climatology (right). 
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Figure 6. DMS seasonal cycles by biomes. The monthly means, medians, interquartile range and 5%-95% percentiles are 

shown for the in situ database, the L11 climatology, and remote sensing climatologies derived from the DMSSAT, SD02 and 
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VS07 algorithms. The temporal axis has been shifted by 6 months in the Southern hemisphere, i.e., July is the 1st month and 

June the 12th. 
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Figure 7: Hovmöller diagrams comparing climatological DMS fields. (a) L11 climatology, (a) DMSSAT algorithm, (c) 

SD02 algorithm, and (d) VS07 algorithm. 
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Figure 8: Histograms illustrating the relationship between DMS and Chl in the global ocean. (a) ChlSAT histograms for 

the global SeaWiFS 1997-2010 climatology and the DMS database SeaWiFS match-ups; (b–f) 2D histograms of the global 

SeaWiFS 1997-2010 Chl climatology vs. DMS from (b) the in situ DMS database, (c) the L11 DMS climatology, (d) 5 

DMSSAT, (e) SD02 and (f) VS07 algorithms. 
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Figure 9: Interannual DMSSAT variability in the subpolar North Atlantic. (a) northwest Atlantic drift, (b) shelf break 

west of Ireland, (c) Southern North Sea shelf. The top row shows individual years between 2003 and 2016 diagnosed from 8-

day MODIS-Aqua data, marked by colors, and the mean seasonal cycle according to the L11 DMS climatology (black); 5 

colored circles mark the peak of each seasonal cycle. The bottom row shows the mean annual cycles of ChlSAT, DMSPtSAT, 

DMSSAT and the L11 DMS climatology; each variable is divided by its maximum, shown by the number in the quotient, and 

a common scaling factor is used for DMSSAT and DMSL11; markers on the L11 line indicate the amount of in situ data on 

which the L11 climatology is based in a given month: no data, i.e. month filled through interpolation (no marker); 1–9 

measurements on one single year (empty circles); ≥10 measurements on one single year (crossed circles); and ≥10 10 

measurements on more than one year (filled black circles). Red polygons on the map show the 3 selected areas and the larger 

region used for the validation scatterplots (Fig. S3). 
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Figure 10: DMSSAT vs. in situ data at long-term research stations. (a–c) Ocean Station P in the northeast Pacific (50°N, 

145°W); (d–f) Bermuda Atlantic Time Series station (31°40'N, 64°10'W). (a) and (d) compare DMSSAT estimates to in situ 

measurements; (b) and (e) compare monthly DMS climatologies derived from DMSSAT (2003-2016 MODIS-Aqua data), in 5 

situ data (available measurements between 2003-2016) and the L11 DMS climatology; (c) and (f) show the corresponding 

DMSPtSAT and PARSAT climatologies (2003-2016) and, at BATS, in situ DMSPt. The periods shown for in situ data are 

2005-2016 for OSP (during which 3 measurements per year are generally available) and 2005-2008 for BATS. Shaded 

envelopes and error bars show the minima and maxima of satellite-derived and in situ data, respectively. 
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Table 1: Correlation analysis. Correlation coefficients with p-value < 0.01 are not shown; italic marks 0.0001 < p < 0.01; 

na: not applicable. "Ratio" refers to log10(DMS/DMSPt). DMS, DMSPt, Chl, MLD, [NO3] and [PO4] were log10 transformed. 

Bottom and nutricline depths have positive sign (deeper is bigger). See the text for other acronyms. 

 

 Non-binned data Monthly 5°x5° binning (M5x5) Monthly Longhurst binning 

(MLongh) 

 DMS N Ratio N DMS N Ratio N DMS N Ratio N 

In situ data 

DMSPt 0.65 3637 

to 

41304 

na 1442 

to 

3637 

0.58 308 

to 

1562 

 

na 157 

to 

308 

 

0.46 122 

to 

322 

 

na 87 

to 

119 

 

Chl 0.45 -0.33 0.37 -0.28 0.34 -0.45 

SST -0.02 0.29  0.45  0.56 

Salinity -0.12 0.27    0.32 

Wind speed -0.12 -0.13 -0.12  -0.20 -0.27 

Bottom depth -0.19 0.10 -0.12 0.16  0.26 

Day Length 0.42 0.06 0.43  0.49  

Climatological data 

MLD -0.37 35505 

to 

39478 

 

-0.13 3433 

to 

3637 

 

-0.32 1474 

to 

1535 

 

 298 

to 

308 

 

-0.51 312 

to 

318 

 

-0.24 119 

 [NO3] 0.06 -0.19 0.16 -0.31  -0.45 

[PO4] 0.05 -0.15 0.13 -0.34  -0.32 

N-cline -0.14 0.30 -0.22 0.44  0.55 

P-cline -0.12 0.24 -0.14 0.45  0.37 

Satellite match-up data 

PARSAT 0.32 16411 

to 

41088 

 

0.35 1123 

to 

3620 

 

0.30 498 

to 

1539 

 

0.46 124 

to 

307 

 

0.52 171 

to 

321 

 

0.67 86 

to 

119 

 

PARMLD 0.12 0.37 0.15 0.49 0.36 0.66 

ChlSAT 0.37 -0.42 0.22 -0.34 0.28 -0.39 

PICSAT 0.24 -0.27 0.29 -0.30 0.33  
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Table 2: Summary of fitted model coefficients and goodness-of-fit statistics. Different sets of coefficients were obtained 

by fitting the model log10DMS = α + β log10DMSPt + γ PAR to observed DMS, DMSPt and PARSAT after applying different 

binning schemes. Equations 2f and 2h were derived using a different optimization procedure, applied to the global MLongh 

binned dataset and to the Bermuda Atlantic Time Series local dataset. Shading highlights the models implemented to 

calculate a global DMS climatology (lighter gray) and regional or local time series (darker gray). 5 

 

 

  

 Binning  Bin 

metric 

Equation α  β  γ  R2
adj RMSE SlopeMA N 

Regression, 

global scale 

Non-

binned 

 2a -1.213 ± 

0.028 

0.672 ± 

0.012 

0.0136 ± 

0.0006 

0.50 0.35 0.62 3620 

M5x5 Mean 

  

2b -1.154 ± 

0.083 

0.669 ± 

0.0371 

0.0130 ± 

0.0015 

0.55 0.28 0.67 307 

 

Media

n 

2c -1.061 ± 

0.084 

0.569 ± 

0.039 

0.0130 ± 

0.0015 

0.46 0.28 0.58 

MLongh Mean 

 

2d -1.061 ± 

0.115 

0.583 ± 

0.054 

0.0155 ± 

0.0019 

0.57 0.24 0.70 118 

Media

n 

2e -1.018 ± 

0.100 

0.452 ± 

0.050 

0.0163 ± 

0.0016 

0.57 0.21 0.69 

Optimization, 

global scale 

MLongh Media

n 

2f -1.237 0.578 0.0180 0.56 0.22 0.87 118 

Regression, 

regional scale 

(>45N) 

M5x5 Mean 

 

2g -1.283 ± 

0.154 

0.670 ± 

0.097 

0.0186 ± 

0.011 

0.68 0.28 0.80 87 

Optimization, 

local scale 

(BATS) 

Non-

binned 

 2h -0.898 0.316 0.0214 0.44 0.26 0.66 35 
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Table 3: Global mean area-weighted DMS concentrations calculated with different algorithms. Different DMSSAT 

results were obtained with alternative approaches for retrieving chlorophyll a concentration (ChlSAT) and the euphotic layer 

depth (ZeuSAT) from satellite data. Calculations are based on 1°x1° gridded data; na: not applicable. 

 

DMS algorithm or 

data product 

ChlSAT product KdSAT or ZeuSAT 

product 

Area weighted global 

DMS mean (nM) 

L11 climatology (Lana 

et al., 2011) 

na na 2.44 

SD02 (Simó and Dachs, 

2002) 

OC4-CI na 2.12 

VS07 (Vallina and 

Simó, 2007b) 

na Kd490 2.71 

DMSSAT eq. 2f (this 

study) 

OC4-CI Zeu = 4.6/Kd490 1.63 

Zeu_Lee 1.58 

GSM Zeu = 4.6/Kd490 1.58 

Zeu_Lee 1.55 
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